- 1. (10 points) If $|i\rangle$ and $|j\rangle$ are eigenkets of Hermitian operator A. Under what conditions is $(|i\rangle + |j\rangle)$ an eigenket of A
- 2. (15 points) Show that any operator that commutes with two Cartesian components of the angular momentum operator necessarily commutes with the total angular momentum operator.
- 3. Define $N = b^{\dagger}b$, where b^{\dagger} being the Hermitian conjugate of the operator **b**, where $b^{\dagger}b + bb^{\dagger} = 1$, and $b^2 = 0$.
 - (a) (10 points) Is **b** Hermitian?
 - (b) (5 points) Is N Hermitian?
 - (c) (10 points) Show that $N^2 = N$ and find the eigenvalues of **N**.
- 4. Let \vec{s}_1 and \vec{s}_2 be the spin operators of two spin 1/2-particles. Then $\vec{S} = \vec{s}_1 + \vec{s}_2$ is the spin operator for this two-particle system.
 - (a) (10 points) Consider the Hamiltonian $H_0 = \frac{1}{\hbar^2}(S_x^2 + S_y^2 S_z^2)$. Determine the eigenvalues and eigenvectors of this Hamiltonian.
 - (b) (20 points) Consider the perturbation $H_1 = s_{1x} s_{2x}$. Calculate the eigenvalues of $H_0 + \lambda H_1$ in first-order perturbation theory.
- 5. Suppose that a hydrogen atom is exposed to a uniform electric field, $\vec{\varepsilon}$, and a parallel, uniform magnetic field, \vec{B} . Consider the first excited energy level, corresponding to n = 2.
 - (a) (15 points) Show that in general the level is split into four nondegenerate energy levels.
 - (b) (10 points) For what values of ε and B are there instead only three levels, and what are the degeneracies of these levels?
 - (c) (10 points) For what values of ε and B are there only two levels, and what are the degeneracies of these levels?
- 6. (25 points) Consider a particle bound in a simple harmonic oscillator potential. Initially (t < 0), it is in the ground state. At t = 0 a perturbation of the form

$$H_0(x;t) = Ax^2 e^{-\frac{t}{\tau}}$$

is switched on. Using time-dependent perturbation theory, calculate the probability that, after a sufficiently long time ($t \gg \tau$), the system will have made a transition to a given excited state. Consider all the states.

7. Consider two coupled oscillators A and B described by annihilation/creation operators \hat{a} , \hat{a}^{\dagger} and \hat{b} , \hat{b}^{\dagger} respectively, satisfying the usual commutation relations. The Hamiltonian describing their dynamics is given to be:

$$\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + \hat{b}^{\dagger}\hat{b} + 1) + \hbar k(\hat{a}\hat{b}^{\dagger} + \hat{b}\hat{a}^{\dagger})$$

where k is the "coupling constant".

(a) (15 points) Show that the solution to the Heisenberg equations of motion are:

$$\hat{a}(t) = e^{-i\omega t} (\hat{a}(0)\cos(kt) - i\hat{b}(0)\sin(kt))$$
$$\hat{b}(t) = e^{-i\omega t} (\hat{b}(0)\cos(kt) - i\hat{a}(0)\sin(kt))$$

(b) (15 points) Suppose that the state of the system (in the Schrödinger picture) at t=0 is a product state consisting of oscillator A in the first excited state and B in the ground state, $|\psi(0)\rangle = |1_A \rangle \times |0_B \rangle$. Find the state of the composite system at later times, and show that the reduced density operator for oscillator A alone in the basis $|1_A\rangle$, $|0_A\rangle$ is:

$$\hat{\rho}_A = \left(\begin{array}{cc} \cos^2(kt) & 0 \\ 0 & \sin^2(kt) \end{array} \right)$$

(c) (5 points) How does the "purity" of the state $\hat{\rho}_A$ vary with time?

Goo	d	Luck			
ت ت					

Question:	1	2	3	4	5	6	7	Total
Points:	10	15	25	30	35	25	35	175
Score:								