BirZeit University
Faculty of Science-Department of Physics
Quantum Mechanics Phys635
Spring 2016
Final Exam, May. 30th 2016

1. (10 points) If $\mid i>$ and $\mid j>$ are eigenkets of Hermitian operator A. Under what conditions is $(|i>+| j>)$ an eigenket of A
2. (15 points) Show that any operator that commutes with two Cartesian components of the angular momentum operator necessarily commutes with the total angular momentum operator.
3. Define $N=b^{\dagger} b$, where b^{\dagger} being the Hermitian conjugate of the operator \mathbf{b}, where $b^{\dagger} b+b b^{\dagger}=1$, and $b^{2}=0$.
(a) (10 points) Is b Hermitian?
(b) (5 points) Is \mathbf{N} Hermitian?
(c) (10 points) Show that $N^{2}=N$ and find the eigenvalues of \mathbf{N}.
4. Let \vec{s}_{1} and \vec{s}_{2} be the spin operators of two spin 1/2-particles. Then $\vec{S}=\vec{s}_{1}+\vec{s}_{2}$ is the spin operator for this two-particle system.
(a) (10 points) Consider the Hamiltonian $H_{0}=\frac{1}{\hbar^{2}}\left(S_{x}^{2}+S_{y}^{2}-S_{z}^{2}\right)$. Determine the eigenvalues and eigenvectors of this Hamiltonian.
(b) (20 points) Consider the perturbation $H_{1}=s_{1 x}-s_{2 x}$. Calculate the eigenvalues of $H_{0}+\lambda H_{1}$ in first-order perturbation theory.
5. Suppose that a hydrogen atom is exposed to a uniform electric field, $\vec{\varepsilon}$, and a parallel, uniform magnetic field, \vec{B}. Consider the first excited energy level, corresponding to $\mathrm{n}=2$.
(a) (15 points) Show that in general the level is split into four nondegenerate energy levels.
(b) (10 points) For what values of ε and B are there instead only three levels, and what are the degeneracies of these levels?
(c) (10 points) For what values of ε and B are there only two levels, and what are the degeneracies of these levels?
6. (25 points) Consider a particle bound in a simple harmonic oscillator potential. Initially($\mathrm{t}<0$), it is in the ground state. At $t=0$ a perturbation of the form

$$
H_{0}(x ; t)=A x^{2} e^{-\frac{t}{\tau}}
$$

is switched on. Using time-dependent perturbation theory, calculate the probability that, after a sufficiently long time $(t \gg \tau)$, the system will have made a transition to a given excited state. Consider all the states.
7. Consider two coupled oscillators A and B described by annihilation/creation operators $\hat{a}, \hat{a}^{\dagger}$ and $\hat{b}, \hat{b}^{\dagger}$ respectively, satisfying the usual commutation relations. The Hamiltonian describing their dynamics is given to be:

$$
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\hat{b}^{\dagger} \hat{b}+1\right)+\hbar k\left(\hat{a} \hat{b}^{\dagger}+\hat{b} \hat{a}^{\dagger}\right)
$$

where k is the "coupling constant".
(a) (15 points) Show that the solution to the Heisenberg equations of motion are:

$$
\begin{aligned}
\hat{a}(t) & =e^{-i \omega t}(\hat{a}(0) \cos (k t)-i \hat{b}(0) \sin (k t)) \\
\hat{b}(t) & =e^{-i \omega t}(\hat{b}(0) \cos (k t)-i \hat{a}(0) \sin (k t))
\end{aligned}
$$

(b) (15 points) Suppose that the state of the system (in the Schrödinger picture) at $\mathrm{t}=0$ is a product state consisting of oscillator A in the first excited state and B in the ground state, $\left|\psi(0)>=\left|1_{A}>\times\right| 0_{B}>\right.$. Find the state of the composite system at later times, and show that the reduced density operator for oscillator A alone in the basis $\left|1_{A}\right\rangle,\left|0_{A}\right\rangle$ is:

$$
\hat{\rho}_{A}=\left(\begin{array}{cc}
\cos ^{2}(k t) & 0 \\
0 & \sin ^{2}(k t)
\end{array}\right)
$$

(c) (5 points) How does the "purity" of the state $\hat{\rho}_{A}$ vary with time?

Good Luck										
Question: 1 2 3 4 5 6 7 Total Points: 10 15 25 30 35 25 35 175 Score:										

